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Summary 

In this project, we conducted research on developing new models and algorithms to address 
the fundamental edge grouping problem in computer vision and image processing. Based on edge 
grouping results, we further developed new partial shape matching, object localization, shape-based 
classification, and shape correspondence algorithms to detect structures or objects of interest from 
cluttered images. The major accomplished work includes: 

1. Development of a unified framework for edge grouping that can detect both open and closed 
boundaries from a cluttered image. A closed boundary corresponds to the case in which the 
desirable object is completely located within the image perimeter, while an open boundary cor- 
responds to the case in which the desirable object is partially cropped by the image perimeter. 
In this framework, a set of edge and region features are first detected from the image. These 
features are then integrated into a unified grouping cost (a measure negatively related to the 
structural saliency) that takes a ratio form: the numerator describes the edge features and the 
denominator describes the region features. We found that the globally optimal boundary that 
minimizes this unified grouping cost can be found in polynomial time by using graph models 
and algorithms. 

2. Development of graph models and algorithms to detect boundaries that show certain levels of 
symmetry, an important geometric property of many structures of interest. We addressed this 
problem by encoding boundary symmetry into edge grouping. More specifically, we constructed 
a new grouping token by pairing the detected edges into some symmetric trapezoids and some 
gap-filling quadrilaterals. Based on these, we defined a grouping cost that incorporates a term 
for boundary symmetry and constructed a graph model in which a symmetric boundary can 
always be modeled by a path. Finally, we adapted our graph models and algorithms for finding 
the optimal path corresponding to the desirable symmetric boundary. 

3. Development of a new partial shape matching algorithm to match two 2D contours with mild 
nonrigid shape deformation and multiple partial occlusions. This algorithm identifies and 
matches a subset of fragments of the two contours and finds the one-to-one dense point corre- 
spondence between them. More specifically, we used the MCMC (Markov chain Monte Carlo) 
algorithm to search for the matched subset of fragments. This partial shape matching algo- 
rithm can be used for matching detected boundaries (resulting from edge grouping) against a 
set of per-stored template object boundaries for object detection and segmentation. 

4. Development of a free-shape subwindow search algorithm for object localization. We adapted 
the graph models and algorithms developed for edge grouping for localizing the objects of 
interest by finding a tighter free-shape covering subwindow. The state-of-the-art bag of visual 
words technique is used to detect, describe, and quantify the features, where the desirable object 
features and the background features are distinguished by using supervised SVM (support 
vector machine) learning. We tested the developed algorithm on the widely-used PASCAL 
VOC2006 and PASCAL VOC2007 databases, where each category of objects bears very large 
within-category variations. We found that the performance of the developed algorithm is better 
than the current state-of-the-art efficient subwindow search algorithms. 

5. Development of two perceptually motivated strategies for shape classification and recognition. 
The first strategy handles shapes that can be decomposed into a base structure and a set 
of inward or outward pointing strand structures, where a strand structure represents a very 
thin, elongated shape part attached to the base structure.  We decomposed such shapes and 
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computed their shape similarities by measuring the similarity of their base structures and 
strand structures separately. The second strategy handles shapes that exhibit good bilateral 
symmetry. We developed an algorithm to identify such symmetric shapes and unify their aspect 
ratio in terms of their symmetry axis before measuring the shape similarity. We found that 
these two strategies can be integrated into available shape matching methods to achieve the 
new state-of-the-art classification performance on the widely-used MPEG7 shape dataset. 

6. Development of a new benchmark for shape-correspondence performance evaluation. Different 
from previous shape-correspondence evaluation methods, the proposed benchmark first gener- 
ates a large set of synthetic shape instances by randomly sampling a given statistical shape 
model that defines a ground-truth shape space. The proposed benchmark allows for a more 
objective evaluation of shape correspondence than previous methods. We also developed a new 
shape correspondence algorithm that pre-organizes the population of shape instances in a tree, 
where each node represents a shape instance and each edge connects two very similar shape in- 
stances. We then only correspond shape-instance pairs that are connected by an edge. Testing 
on the benchmark shows that the new algorithm achieves high correspondence accuracy and 
low algorithm complexity simultaneously. 

1    Edge Grouping for Open and Closed boundaries 

For edge grouping, we first detect a set of edges, as shown in Fig. 1(b), from an input image I(x, y), as 
shown in Fig. 1(a). We refer to these edges as detected segments. Second, we construct an additional 
set of straight line segments to connect every pair of detected segments. We refer to these new straight 
line segments as gap-filling segments. A closed boundary is then defined as a cycle of alternating 
detected and gap-filling segments, as shown in Fig. 1(d). To unify both open and closed boundary 
detection in the grouping, we divide the image perimeter into a set of detected segments, as shown 
in Fig. 1(e). If the resulting optimal closed boundary contains one or more segments constructed 
from the image perimeter, it is actually an open boundary, as shown in Fig. 1(f), where the resulting 
boundary (red thick segments) contains part of the perimeter and in fact is an open boundary. 
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Figure 1: An illustration of edge grouping for unified closed and open boundary detection, (a) Input 
image, (b) detected segments, (c) binary feature map, (d) the detected closed boundary that traverses 
detected (solid) and gap-filling (dashed) segments alternately, (e) dividing the image perimeter into 
a set of detected segments, and (f) when the detected closed boundary (red thick segments) contains 
part of the image perimeter, it represents an open boundary cropped by image perimeter. 

Region information can be integrated into edge grouping by constructing a binary feature map as 
shown in Fig. 1(c). A binary feature map M{x,y) is of the same size as the input image I{x,y) and 
reflects whether pixel (x, y) has a desired property or not. It can be constructed from the input image 
I{x,y) using an image-analysis method and/or any available a priori knowledge of the appearance 
of the desirable salient structures. We set M(x,y) = a (white) to indicate that pixel (x,y) belongs 
to the desired structure and M{x,y) = (3 (black) otherwise.   Note that feature map also contains 



noise and errors. We set a > 0 and (3 < 0 such that Yl(x,y) M{x,y) = 0. Without loss of generality, 
we set a = 1 and 

0 = - 
£ (x,y):M(x,y)>0 1 

l-j{x,y):M(x,y)<0 * 

We defined a unified grouping cost for a candidate (open or closed) boundary B as 

\BG\ 

(1) 

0(B) 

//      M(x,y)dxdy 
J JR{B) 

(2) 

where |£?G| is the total length of all the gap-filling segments along the boundary B. This accounts for 
the Gestalt law of proximity, where a smaller total gap length \BG\ represents better proximity. R(B) 
is the region enclosed by the boundary B and ff^^ M(x,y)dxdy is the sum of the feature values of 
the pixels, taken from the binary feature map M, inside the region enclosed by B. We found that 
that the ratio-contour algorithm [42] can be used to find the global optima of this grouping cost. 

Sample experimental results are shown in Fig. 2. This algorithm can be applied to the segmented 
regions recursively to obtain a hierarchical image segmentation, as shown in Fig. 3. The hierarchical 
image segmentation performance on a selected 100 natural images from the Berkeley dataset is shown 
in Table 1, with comparisons to several other state-of-the-art image segmentation algorithms. In this 
performance evaluation, we use the boundary consistency measure [27] in the Berkeley Benchmark, 
which provides precision, recall, and an integrated "F-measure" of the detected boundaries against 
the manual segmentation. 

W # ? 
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Figure 2: Sample experimental results of the edge grouping for both open and closed boundaries, 
(a) Input images, (b) detected segments, (c) constructed binary feature map, and (d) detected 
boundaries. 

2    Edge Grouping for Symmetric boundaries 

Structures of interest encountered in many real images show a certain level of (bilateral) symmetry 
over a particular axis. The straighter the symmetry axis, the higher the symmetry of the underlying 
structural boundary. We developed new graph models and algorithms to address symmetric edge 
grouping in a globally optimal fashion. Based on the edge grouping framework described in Section 1, 



Figure 3: Sample experimental results of the iterative edge grouping for hierarchical image segmen- 
tation, (a) Input image, (b) detected segments, (c) binary feature map constructed for the first 
iteration of edge grouping, and (d) resulting image segmentation. 

Method Recall     Precision    F-measure 
Berkeley Edge Detector [26] 

Proposed Method 
Ultrametric Contour Maps [4] 

BGCGTG [27] 
Statistical Region Merging (SRM) (Q = 128) [32] 

Linear Multiscale Normalized Cut [12] 

0.7O58 0.6857 0.6956 
0.6597 0.6973 0.6780 
0.6860 0.6576 0.6715 
0.6934 0.6078 0.6478 
0.6989 0.5241 0.5990 
0.5940 0.5787 0.5862 

Table 1: Image segmentation performance on the Berkeley Benchmark [28, 27], according to a 
boundary-consistency measure. Note that while Berkeley Edge Detector [26] shows a higher F- 
measure value, it only detects incomplete boundaries and cannot accomplish a region-based segmen- 
tation. 

we constructed a new grouping token by pairing the detected segments into some symmetric trape- 
zoids, as shown in Figs. 4(a) or (b), where three trapezoids 71 = {P1P2P11P12}, Th. = {-P3-P4.P9.P10}, 
and 73 = {P5P6P7P8} are constructed from detected-segment pairs P1P2 & P11P12, P3P4 & P9P1C 
and P5P6 & P7P8 respectively. Q1Q2, Q3Q4 and QsQe are the symmetry axes of these three trape- 
zoids. To group these trapezoids into a closed boundary, we constructed some quadrilaterals to 
fill the gap between the trapezoids. For the examples shown in Figs. 4(a) and (b), two gap-filling 
quadrilaterals Q\ = {P2P3P10P11} and Q2 = {P4P5P8P9} can connect the three trapezoids T\, T2 
and 7-5 into a closed boundary B = P1P2... Pi2Pi with a polyline axis axis(P) = Q\Qz • • • Qs- We 
defined a grouping cost for such a boundary B as 

\BG\ + A • p(ax±s(B)) m = area(B) (3) 

where p(ax±s(B)) is a measure of the straightness of the polyline axis of the boundary B. 
We then constructed a graph where each vertex represents a trapezoid axis endpoints, i.e., Qi,i = 

1,2, ...,6 in Fig. 4 and each solid (or dashed) edge represents a trapezoid (or quadrilateral) axis. 
By embedding the grouping cost (3) to edge weights, we reduced the edge-grouping problem to a 
problem of finding an alternate path with a minimum ratio-form cost in this graph. We found that 
the ratio-contour algorithm can be adapted to find such a globally optimal path in polynomial time. 
Sample results are shown in Fig. 5. 



(a) (b) 

Figure 4: An illustration of grouping detected trapezoids into a closed boundary. 

3    Partial Shape Matching 

We developed a new algorithm for partial shape matching that can better handle nonrigid shape 
deformation and allow the matching of multiple disjoint contour fragments. We represent each 
contour by a sequence of landmark points and the partial shape matching is reduced to a problem of 
selecting subsequences of these landmark points and matching them. We used the MCMC (Markov 
Chain Monte Carlo) technique [18] to find the globally optimal matching. 

Using Bayesian inference, we set the goal to find a partial shape matching with the maximal 
posterior probability, which is the product of likelihood and prior. The likelihood describes the 
matching cost between the selected landmarks on the two contours and the prior specifies certain 
general preference on the landmark selection on each contour. To account for the nonrigid shape 
deformation between them, we defined the likelihood using the Procrustes distance [15] between 
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Figure 5: Sample edge grouping results considering symmetry information, (a) Input image, (b) 
detected segments, (c) edge grouping result without considering symmetry, and (d) edge grouping 
result by considering symmetry. 



the selected subsequences of landmark points on these two contours: the smaller the Procrustes 
distance, the larger the likelihood. Procrustes distance is invariant to rotation, translation and 
scaling transforms [7]. 

We considered the following gap penalty prior density in the form of e(~aGN-b-GL)^ where a > 0 
and b > 0 are the penalty parameters, GN is the number of gaps, and GL is the total gap length. 
A 'gap' is defined as either a single unmatched landmark point or a set of consecutive unmatched 
landmark points. To avoid counting the gaps that are introduced by denser landmark sampling on 
a contour, we sample sparser landmark point on one contour than on the other and then measure 
GN and GL on the former contour. This prior provides two desirable properties. First, the larger 
the number of landmark points selected for matching, the better. The second desirable property is 
that we prefer un-selected landmark points to occur in sequence rather than being spread over the 
contour. Without this property, the algorithm may favor many short and disjoint matching contour 
fragments. 

With this prior and the likelihood, we estimated the posterior for any partial shape matching 
results using an MCMC inference, such as the Metropolis-Hastings algorithm [30], to search for 
the optimal matching. The effectiveness of an MCMC scheme is highly dependent on the choice 
of proposal distribution. We used two simple proposals in our algorithm: (i) the match-unmatch 
proposal, where a randomly selected point is removed from the matched subsequence if it is currently 
in the matched subsequences, and vice versa, with a given probability; and (ii) the match-match 
proposal, where a randomly selected point, which is currently in the matched subsequence (matched 
to a landmark point on the other contour), is set to match a new randomly selected point on the 
other contour without breaking contour topology, i.e., when connecting the identified landmarks on 
each contour with the specified order, no self-intersection will be produced. 

Sample results using this partial shape matching algorithm are shown in Fig. 6. We also quan- 
titatively compare the performances of this MCMC-based algorithm with the performance of the 
Smith-Waterman algorithm used in [10] on 40 sets of synthetic contour pairs. Each contour set con- 
sists of 40 shape-contour pairs that are constructed from the well-known MPEG7 shape dataset [22] 
by introducing various nonrigid shape deformations and partial shape occlusions. The comparison re- 
sults are shown in Fig. 7, where the matching score is based on the coincidence between the obtained 
and the ground-truth partial shape matchings. This matching score penalizes both false positive and 
false negative matched fragments. 

4    Free-shape Subwindow Search for Object Localization 

Localizing objects with large within-category variation requires effective methods to (a) identify good 
features to distinguish the objects of interest from the cluttered background, and (b) search for the 
regions that show strong features identifying objects of interest. 

The bag of visual words technique [41, 19, 23] is the current state of the art technique for feature 
detection. In this technique, a large set of image features are detected and quantified into a small 
set of visual words. A classifier is trained on training images (with labeled foreground object and 
background) to associate a feature score with each visual word: if a visual word bears a positive 
score, it is more like a feature of the desirable object of interest, and if a visual word bears a negative 
score, it is more like a feature of the background. Sliding window [9, 17] is a widely-used technique 
for feature based object localization: for every possible subwindow in an image, the feature scores 
covered by the window are checked and the one with the maximum total feature scores is selected 
as the optimal subwindow as thus the location of the object. Recently, more efficient branch and 
bound algorithms [21, 3] have been developed to speed up the subwindow search without exhaustively 



Figure 6: Sample results from the proposed partial shape matching algorithm. One contour (in blue) 
is shown inside the the other (in green). The matched landmark point pairs are linked by red lines. 

checking all possible subwindows, while retaining the global optimality of the result. 
In these efficient subwindow search (ESS) algorithms, the searched subwindows are also rect- 

angles, as in the sliding window technique. A rectangular subwindow may not cover the object of 
interest tightly, which may hurt the object localization accuracy. We adapted the graph-based edge 
grouping algorithm described in Section 1 to develop a free-shape subwindow search algorithm to ad- 
dress this problem. Besides the preference to cover more positive-score features, we also required the 
resulting subwindow to align well with edge pixels detected from the image. This way, the boundary 
of the search subwindow is better aligned with the object boundary and the object localization is 
more robust against the feature noise. Specifically, we detected a set of disjoint edges in the original 
image using an edge detector and then formulated the problem of object localization as identifying 

Figure 7: The performance curves of the proposed MCMC-based algorithm and the Smith-Waterman 
algorithm used in [10]. 



a subset of edges and connecting them into a closed contour C, so that this contour C minimizes 

\CG\ <f>(C) 
E/6C «"(/)' 

subject to the constraint 

2>(/)>o. 

(4) 

(5) 
f&c 

where \CG\ is the total length of the gaps along the contour C, and E/ecM/) *s *ne total score of 
the features / located inside the contour C. Constraint (5) prevents the detection of an undesired 
subwindow C that covers all negative-score features and leads to a negative cost <p(C). 

We found that the ratio contour algorithm used in Sections 1 and 2 can be adapted to solve this 
optimization problem. More specifically, we found that, by removing the constraint (5), the optimal 
contour minimizing the cost (4) can be found in polynomial time using the ratio-contour algorithm. 
If this optimal contour satisfies the constraint (5), we proved that this optimal contour is the desired 
optimal contour C for this image. Otherwise, we can remove the edges in the detected contour and 
repeat the ratio contour algorithm until finding a contour that satisfies the constraint (5) to obtain 
an approximate solution. Figure 8 shows several samples results of the developed algorithm and 
compares it with the result from the ESS algorithm [21]. 

Figure 8: Sample object-localization results of the proposed algorithm (top row) and the ESS algo- 
rithm [21] (bottom row). Red contours in the top row are the free-shape subwindows detected by 
the proposed algorithm and green contours in the top row are the minimum bounding rectangles of 
the red contours. In this experiment, we use the visual words and feature scores trained in [21]. 

We tested the proposed algorithm by localizing several categories of animals from the PASCAL 
VOC 2006 and 2007 databases and comparing its performance with the performance of the ESS 
algorithm [21]. VOC 2006 database contains 5,304 natural images and VOC 2007 contains 9,963 
natural images, where each category of object shows very large variations. Table 2 shows the detection 
rates of several categories of animals in the VOC 2006 and VOC 2007 datasets using the proposed 
algorithm and the ESS algorithm. 

5    Perceptually Motivated Strategies for Shape Classification 

Accurately and reliably measuring the similarity of two shape instances is a fundamental problem 
in computer vision and plays a central role in many shape-based vision applications including shape 
matching, shape classification, shape recognition, and shape retrieval. From 2D images, closed 
contours aligned with object boundaries can be extracted as shape instances, which we also refer to as 
shape contours. These extracted shape contours may demonstrate a large amount of variation, have 
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VOC 2006 VOC 2007 
dataset Proposed ESS Proposed ESS 

dog 0.502 0.458 0.419 0.389 
cat 0.524 0.408 0.433 0.422 

sheep 0.337 0.281 0.132 0.095 
cow 0.436 0.298 0.217 0.176 

horse 0.448 0.370 0.398 0.388 

Table 2:  The performances of the proposed algorithm and the ESS algorithm on VOC 2006 and 
VOC 2007 datasets. 

highly articulated shape parts, involve global and/or local non-rigid deformations, and contain partial 
occlusions. Even with such complexities, human vision can easily determine whether two shape 
contours belong to the same shape class. However, developing computational models and methods 
that can accomplish the same task has proven to be challenging. We developed two perceptually 
motivated strategies for improving the measure of the shape similarity. 

The first strategy aims to better handle the shape contours that contain thin, elongated strand 
structures. Such strand structures may point inward or outward. Two examples of shape contours 
with outward strand structures are shown in Fig. 9(a) and (b), and an example of a shape contour 
with inward strand structures is shown in Fig. 9(e). 

(c) 

Figure 9: (a-b) Two shape contours with outward strand structures, (c-d) Base structure and strand 
structures of (a) after shape decomposition, (e) A shape contour with inward strand structures, 
(f) Base structure of (e) after removing inward strand structures. 

In practice, outward strand structures usually describe "leg" or "branch"-like shape components. 
In human perception, the exact geometry, such as the curvature and length of strand structures, may 
not be important for shape recognition and classification. For example, the shape contours shown 
in Fig. 9(a) and (b) are of the same shape class (octopus) and demonstrate high shape similarity in 
human perception although their legs may be quite different from each other in terms of geometry 
and size. We developed an algorithm to decompose such a shape contour into a base structure and 
a set of strand structures, as illustrated in Fig. 9(c) and (d) respectively. When evaluating the 
similarity between two such shape contours, we match their base structures and strand structures 
separately. In particular, we apply a deformable shape matching method to compare base structures. 
When matching strand structures, we simply check whether these two shape contours have a similar 
number of strands, omitting their detailed geometry. 

Inward strand structure can also be extracted by shape decomposition. By removing inward 
strand structures, we obtain a base structure as illustrated in Fig. 9(f), which is actually the union 
of the extracted inward structures and the original shape contour. When the inward strand structures 
are small compared to the structure described by the original shape contour, their removal does not 



affect the general human perception of the shape contour. For example, humans usually perceive the 
shape contours in Fig. 9(e) and (f) to be of the same shape class. We handled such shape contours 
by extracting and removing the inward structures before shape matching and classification. 

The second strategy aims to better handle shape contours that show good bilateral symmetry. For 
such a shape contour, a certain level of scaling along its symmetric axis or the direction perpendicular 
to its symmetry axis usually does not change the human perception of its shape. For example, the 
three different shape contours shown in Fig. 10(a) (b) and (c) all belong to the same shape class 
(tree) in human perception. We developed an algorithm to identify such symmetric shape contours 
and unified their aspect ratio before quantitatively evaluating their shape similarity. Here we define 
the aspect ratio of a symmetric shape contour to be the ratio between the length and width of its 
bounding box along the symmetry axis, as illustrated in Fig. 10(a). 

width 

Figure 10: (a) A shape contour with good bilateral symmetry. Its symmetry axis is shown with a 
dashed line and its bounding box is shown with a dotted line, (b) The shape contour produced by 
scaling (a) along the direction that is perpendicular to its symmetry axis, (c) The shape contour 
produced by scaling (a) along its symmetry axis. 

To test the proposed strategies, we selected the Inner Distance Shape Context (IDSC) method 
[24] to measure the shape-matching cost between two base structures. Yang et al [44] developed a new 
approach to classify a large set of shape contours by extending pairwise shape matching to group-wise 
shape matching in an unsupervised fashion. For this approach, a locally constrained diffusion process 
(LCDP) was developed to enhance the similarity of two shape contours if they have low matching 
cost with another shape contour. This LCDP method also uses the IDSC method for measuring 
the pairwise shape similarity. LCDP achieves state-of-the-art shape classification performance on 
several well-known datasets. We also conducted an experiment using the proposed strategies to 
improve the performance of LCDP, by using IDSC augmented with the proposed strategies as the 
pairwise shape-matching method. 

Figure 11: Example strand structures, and base structures found by the proposed method. The red 
curves represent the inward or outward strand structure, and the black curve represents the base 
structure. 

Our experiments are based on the widely-used MPEG-7 shape dataset (specifically the MPEG-7 
CE-Shape-1 Part B) [22] that defines 70 shape classes, where each shape class contains 20 different 
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Figure 12: Example symmetric shape contours in the MPEG7 dataset. Symmetric axes are shown 
in green. 

shape contours. We used Bullseye testing to evaluate the performance of the shape classification. 
In this test, a shape contour is selected from the dataset as the template, and matched to all 1,400 
shape contours in this dataset. The 40 most similar shape contours (i.e. with the smallest matching 
cost) are selected, and out of these 40, we count the number of shape contours that are actually in the 
same shape class as the template. This number is divided by 20 (the number of shape contours in the 
template class) to obtain a classification rate. This process is repeated by taking each of the 1,400 
shape contours as the template to obtain an average classification rate as the performance. Figure 11 
shows several examples of the shape contours in the MPEG-7 dataset that are decomposed into base 
and strand structures by using Strategy I. Figure 12 shows several examples of the symmetric shape 
contours in the MPEG-7 dataset as determined by Strategy II. Table 3 shows the Bullseye testing 
results on the MPEG-7 dataset using the original IDSC method [24], the original LCDP method [44], 
the IDSC and LCDP methods augmented with the proposed strategies, and other recently published 
methods. By using the proposed strategies, the shape classification rate of IDSC is improved from 
85.40% to 88.39% and the shape classification rate of LCDP is improved from 92.36% to 95.60%. 

6    Shape Correspondence and Its Performance Evaluation 

Statistical shape modeling provides an effective way to quantitatively describe various shape struc- 
tures and their possible variations. Accurately identifying corresponded landmarks from a pop- 
ulation of shape instances and objectively evaluating the shape correspondence performance are 
two major challenges in constructing statistical shape models. We developed a new benchmark for 
shape-correspondence performance evaluation. The system diagram for the proposed benchmark is 
illustrated in Fig. 13. The benchmark consists of the following five components: (Cl) specifying a 
ground-truth statistical shape model to describe the underlying ground-truth shape space, where we 
use a point distribution model (PDM) [11] as statistical shape models, (C2) using this ground-truth 
shape model to randomly generate a set of continuous shape contours S\, S?,..., Sn, (C3) running a 
test shape-correspondence algorithm on these shape contours to identify a set of corresponded land- 
marks, (C4) deriving a statistical shape model from the identified landmark sets, and (C5) assess 
how well the derived statistical shape model describes the ground-truth shape space defined by the 
ground-truth statistical shape model. This assessment is achieved by comparing the shape instances 
sampled from these two shape models using a bipartite matching and other matching methods. 
This five-step process evaluates a shape-correspondence algorithm's ability to recover the underlying 
ground-truth shape space in the continuous shape domain. By introducing a ground-truth shape 
model, the proposed benchmark allows for a more objective evaluation of shape correspondence per- 
formance that is landmark independent. The proposed benchmark can easily be extended to 3D 
cases where each shape instance is a 3D surface. 
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Method Rate 
Proposed method + IDSC + LCDP 95.60 % 
IDSC + LCDP + unsupervised GP [44] 93.32 % 

IDSC + LCDP [44] 92.36 % 
IDSC + LP [6] 91.61 % 

Contour Flexibility [43] 89.31 % 
Proposed method + IDSC 88.39 % 

Shape-tree [16] 87.70 % 
Triangle Area [2] 87.23 % 
IDSC(EMD) [25] 86.56 % 

Hierarchical Procrustes [29] 86.35 % 
Symbolic Representation [13] 85.92 % 

IDSC [24] 85.40 % 
Shape L'Ane Rouge [33] 85.25 % 

Multiscale Representation [1] 84.93 % 
Polygonal Multiresolution [5] 84.33 % 

Fixed Correspondence [37] 84.05 % 
Chance Probability Function [36] 82.69 % 

Curvature Scale Space [31] 81.12 % 
Generative Model [40] 80.03 % 

Table 3: Shape classification rate on the MPEG-7 dataset. 
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Figure 13: An illustration of the proposed shape-correspondence evaluation benchmark. 
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In general, shape correspondence methods can be grouped into one of two categories: global 
methods and pair-wise methods. For global methods [14, 39], an objective function which considers 
the entire population of shape instances is optimized. For pair-wise methods [8, 34], one shape 
instance from the population is designated as the template and the remaining target shape instances 
are optimized to the template one by one. While global methods may produce a more accurate 
shape correspondence they tend to scale poorly when the population size becomes very large. On 
the other hand, since a pair-wise method only considers two shape instances at any time, they tend 
to be less compute intensive and scale favorably to the size of the population. However, because 
a single template shape instance is chosen from the population, pair-wise methods tend to be less 
accurate and can perform unsatisfactorily when the population has a large amount of variance. 
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Figure 14: Performance of six shape correspondence algorithms. The x-axis indicates the round 
of the random simulation. The curves with the "+" symbols are the matching cost between the 
ground-truth shape model and itself. 

To address the limitations of global and pair-wise methods, we developed a new shape corre- 
spondence algorithm that pre-organizes the population of shape instances in a tree. Specifically, 
this is achieved by constructing a minimum spanning tree (MST), where each node represents a 
shape instance and each edge connects two very similar shape instances. The pre-organization step 
provided by the MST allows us to incorporate global information about the population of shape 
instances prior to shape correspondence. A root node is then selected which represents the starting 
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MST T-MDL E-MDL E-MDL+CUR EUC SDI 
Hand 2927 50784 107317 304504 29572 1 739 

Callosum 2318 44732 107506 278832 28420 703 
Femur 1757 59663 109875 261093 28538 740 
Face 2417 50710 103822 259551 28286 745 

Table 4: CPU time (in Seconds) required by the six test shape correspondence algorithms. 

shape instance and then, using the constructed MST and the selected root node neighboring shape 
instances can be corresponded efficiently and accurately using a pair-wise method. 

Figure 14 shows the performance of this algorithm (abbreviated as MST) on four datasets using 
the above mentioned benchmark, with a comparison with other recent shape correspondence algo- 
rithms: Thodberg's implementation of the minimum description length method (T-MDL) [39, 38], 
Ericsson and Karlsson's implementation of the MDL method (E-MDL) [20], Ericsson and Karlsson's 
implementation of the MDL method with curvature distance minimization (E-MDL+CUR) [20], Er- 
icsson and Karlsson's implementation of the reparameterisation method by minimizing Euclidean 
distance (EUC) [20], and Richardson and Wang's implementation of a method that combines land- 
mark sliding, insertion, and deletion (SDI) [35]. The performance measure is the bipartite matching 
cost between two shape spaces and therefore, the lower the better. Table 4 shows the running time 
of these algorithms on a Linux workstation running Intel Xeon 3.4GHz processor with 4GB of RAM. 
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1. Combining Boundary and Region Information for Perceptual Organization, Joachim Stahl, 
Ph.D., 2008 

Abstract: Perceptual organization, or grouping, is an important problem in computer vision and 
image processing that seeks to identify perceptually salient structures in noisy images. As an 
important step in mid-level computer vision, grouping can provide useful input to many high- 
level computer-vision applications such as object recognition or content-based image retrieval. 
To identify a salient structure, a set of tokens is first obtained from the original image, and 
then a subset of these tokens is grouped that minimizes a cost function (or maximizes saliency). 
This work introduces a series of new edge grouping methods to detect perceptually salient 
structures in noisy images, where the grouping tokens are edge segments. Unlike previous edge 
grouping methods, which base their saliency measures exclusively on boundary properties, the 
proposed methods incorporate region information into their saliency measure. The use of region 
information makes these methods more robust to noise in the image, and add capabilities such as 
targeting structures with specific region characteristics. The first method presented introduces 
the general problem of incorporating region information into an edge grouping method. The 
second method targets structures that are a priori known to be convex. The third method uses 
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symmetric trapezoids as its grouping tokens to target structures that are a priori known to 
have good bilateral symmetry. The fourth method extends the first method with the capability 
of detecting open boundaries (for structures not completely present within the perimeter of the 
input image). To find the optimal grouping with the minimum cost, a special graph model is 
developed in each case and the grouping problems are reduced to finding a special kind of cycle 
in these graphs. This optimal cycle-finding problem can be solved in polynomial time using 
a known graph algorithm. The presented methods are tested on both synthetic data and real 
images, and their performance is compared against previous edge-grouping methods. Some 
major results of this dissertation are summarized in Sections 1 and 2 of this report. 

2. Shape Correspondence for Statistical Shape Modeling: Algorithms and Performance Evalua- 
tion, Brent Munsell, Ph.D., 2009 

Abstract: In order to accurately measure structural shape and its possible variation, statistical 
shape analysis has become a major research topic in computer vision and medical image anal- 
ysis in recent years. In statistical shape analysis a population of shape instances is given where 
each shape instance is in the form of a smooth 2D contour or a smooth 3D surface. The goal 
is to construct a statistical shape model that accurately captures the variability of the given 
shape structure described by the population of shape instances. In constructing a statistical 
shape model the first step is to identify a set of landmarks for each shape instance, where a 
landmark is defined as a point of correspondence across the population that can be used to 
examine and measure shape change. In general these landmarks can be identified manually 
by a human (expert), or automatically via software. Manually identifying corresponded land- 
marks can be achieved, however such a method is both subjective and error prone. Because of 
this, developing more accurate and efficient shape correspondence methods that automate the 
landmark identification process has been widely investigated over the last several years. Even 
though much progress has been made, the development of an efficient and accurate shape corre- 
spondence method that scales favorably to the size of the population is still a largely unsolved 
problem. Another open problem in statistical shape analysis is the objective evaluation of 
these shape correspondence methods. One major reason is the unavailability of a ground-truth 
shape correspondence, which would be defined by a group of experts that manually identify 
the corresponded landmarks. Currently, this limitation is addressed by three general measures 
that are used to evaluate the shape correspondence performance. These three measures de- 
scribe the properties of the statistical shape model constructed from a shape correspondence 
result and not against some known ground-truth. The research presented in this disserta- 
tion attempts to address these two problems by developing an efficient and accurate shape 
correspondence method that scales well to the size of the population, and develop a shape 
correspondence benchmark to objectively evaluate shape correspondence performance against 
some known ground-truth. Major results of this dissertation are summarized in Section 6 of 
this report. 
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